(-2x^2+6x+1)-2=(4x^2-3x+1)

Simple and best practice solution for (-2x^2+6x+1)-2=(4x^2-3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-2x^2+6x+1)-2=(4x^2-3x+1) equation:



(-2x^2+6x+1)-2=(4x^2-3x+1)
We move all terms to the left:
(-2x^2+6x+1)-2-((4x^2-3x+1))=0
We get rid of parentheses
-2x^2+6x-((4x^2-3x+1))+1-2=0
We calculate terms in parentheses: -((4x^2-3x+1)), so:
(4x^2-3x+1)
We get rid of parentheses
4x^2-3x+1
Back to the equation:
-(4x^2-3x+1)
We add all the numbers together, and all the variables
-2x^2+6x-(4x^2-3x+1)-1=0
We get rid of parentheses
-2x^2-4x^2+6x+3x-1-1=0
We add all the numbers together, and all the variables
-6x^2+9x-2=0
a = -6; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·(-6)·(-2)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{33}}{2*-6}=\frac{-9-\sqrt{33}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{33}}{2*-6}=\frac{-9+\sqrt{33}}{-12} $

See similar equations:

| (-2x^2+6x+1)=-2(4x^2-3x+1) | | 5/2+x=5/6 | | 4/3x-2=5/2+x-5/6 | | √3x+7​=x+1 | | 17=2.5x+5 | | 11-8x=-9x+22 | | 9+4/3​b=36 | | 4x+14+4x+1=180 | | 107+3x-5=180 | | 6x-8=-7x+18 | | -7-17=2x+10 | | −2.4−0.6x=-1.26 | | -108=-3(-5x+1) | | 12.5+s=25. | | 6x-18=4(2x-3)-2x+3) | | 12/15=x/x | | Y4y=144 | | 2.6=0.4-y/0,5 | | 3^3x=387420489 | | n/0.8=0.02/10 | | 9(x)+6=102 | | 2x=58x-8 | | 2x+8+22=180 | | P=s-1/6s | | -5(v+2)+2v+7=7v+11 | | X^3-8x^2-5x=0 | | 3x=13-10 | | -36+2=4b-12 | | 12=w/5-3 | | 0.2x=0.5(x+7) | | 4x^2+18x+17=0 | | 10.x=x-3.15 |

Equations solver categories